
Abstract. Within the frame of multireference perturba-
tion con®guration interaction we have developed a fast
algorithm, based on diagrammatic techniques, for the
calculation of the ®rst-order correction to the one-
particle density matrix. As an example of an application
we have chosen the evaluation of the dipole moment of
the CO molecule, where utilization of the ®rst-order
density is shown to corroborate the variational calcula-
tion.
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1 Introduction

Multireference perturbation con®guration interaction
(CI) methods have become quite common in quantum
chemistry over the years since the pioneering work of
many researchers in the early 1970s [1, 2]. Basically
such methods rely on a good zero-order description
carried out variationally at the level of a CI or a
multicon®guration self-consistent ®eld (MC-SCF) cal-
culation, followed by perturbation treatment usually
truncated to the second-order in energy. The choice of
zero-order variational space is usually performed
either on the basis of a prede®ned excitation level,
such as singles and doubles CI (SDCI) [3], or on the
basis of the choice of a complete active space (CAS-
SCF) [4] or of a selection procedure to build up the
determinant space [2]. In this last case our group has
been active recently in the implementation of fast
diagrammatic techniques for the evaluation of the
perturbational contribution to the energy [5, 6] as well
as in devising new techniques for a better selection
procedure and extrapolation to large determinantal
spaces [7, 8]. Relatively little attention has been

devoted to the setting up of fast codes for the
evaluation of the one-particle density matrices calcu-
lated to the ®rst-order of perturbation theory. Such
matrices are essential tools for the evaluation of one-
electron state and transition properties as well as for
the determination of well-approximated natural orbit-
als (NOs) [9]. Since the variational spaces currently in
use in perturbation CI can be of considerable size,
reaching some tens of thousands of determinants, the
question of resorting to fast techniques for the
evaluation of the density matrices is acquiring rele-
vance. It is the purpose of this note to expose the
main lines which have led us to e�cient implementa-
tion, based on diagrammatic techniques, of the ®rst-
order perturbation evaluation of the one-particle
density matrices.

The rest of this paper will be devoted to the de-
scription of the calculation methodology that we have
adopted and to the illustration of an example calculation
relating to the CO molecule.

2. Method

The basic de®nitions for the one-particle density matrices between
electronic states Wm and Wn can be summarized by the following
equation

mnq�1; 10� � N
Z

Wm�1; 2; . . . ;N�W�n�10; 2; . . . ;N�ds2 . . . dsn

�
X

ij

mnqijwi�1�w�j �10� ; �1�

where the wi's are a complete set of orthonormal spin-orbitals.
From the de®nition we have the hermitian property
mnqij � nmq�ji : �2�
If the annihilation (creation) operators associated with the wi's are
indicated by ai (a�i ), the quantities mnqij are given by
mnqij � hWnja�j aijWmi : �3�
If the wavefunctions for states m and n are expanded on the
determinant space jMif g built on the spin-orbitals wi's, i.e.,

Wm �
X

M

Cm
M jMi ; �4�
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and analogously for Wn, we obtain the formula

mnqij �hWnja�j aijWmi �
X
M ;N

Cm
M Cn�

N hN ja�j aijMi �5�
The case we are interested in concerns wavefunctions which consist
of a ®rst component given by a variational expansion such as in
Eq. (4) and of a ®rst-order perturbational correction:

Wm � W�0�m �W�1�m :

The density matrix including ®rst-order will accordingly consist of
two terms

mnqij � mnq�0�ij � mnq�1�ij ;

with mnq�0�ij identical to the expression in Eq. (5) and the ®rst-order
contribution given by

mnq�1�ij �hW�1�n ja�j aijW�0�m i � hW�0�n ja�j aijW�1�m i : �6�
(We recall that no contribution due to the normalization of the
wavefunction shows up at ®rst-order.) The ®rst-order correction to
the wavefunction is given by

W�1�m �
X
K=2S
jKi hKjĤjW

�0�
m i

E�0�m ÿ E�0�K

; �7�

where S denotes the set of determinants used in the expansion of
W�0�m ; and E�0�m and E�0�K designate the zero-order energies associated
with W�0�m and jKi; such energies derive from the choice of the zero-
order Hamiltonian which we have imposed to be either of Mùller±
Plesset baricentric-type [2, 10] or Epstein-Nesbet-type [11, 12]; for
further details on the zero-order Hamiltonian the reader is referred
to Ref. [6] and to the references quoted therein.

The explicit formula for the ®rst-order correction to the density
matrices is easily derived as:

mnq�1�ij �
X
K=2S

hW�0�n jĤjKihKja�j aijW�0�m i
E�0�n ÿ E�0�K

�
X
K=2S

hW�0�n ja�j aijKihKjĤjW�0�m i
E�0�m ÿ E�0�K

: �8�

From this formula it can immediately be seen that the diagonal
elements mnq�1�ii vanish. Since the zero-order wavefunctions are of
multireference-type, the two terms of the preceding equation can
be written as:X
K=2S

hW�0�n jĤjKihKja�j aijW�0�m i
E�0�n ÿ E�0�K

�
X

M ;N2S
Cm

M C�nN

X
K=2S

hN jĤjKihKja�j aijMi
E�0�n ÿ E�0�K

; �9�

X
K=2S

hW�0�n ja�j aijKihKjĤjW�0�m i
E�0�m ÿ E�0�K

�
X

M ;N2S
Cm

M C�nN

X
K=2S

hN ja�j aijKihKjĤjMi
E�0�m ÿ E�0�K

: �10�

The summation over K can be e�ciently carried out using dia-
grammatic techniques following the same lines as adopted in the
evaluation of the second-order correction to the energy [5]. In the
summations over K in Eqs. (9) and (10), determinant jMi is assumed
to be a provisional vacuum state, thus leading to the ®rst-order
diagrams shown in Fig. 1. We have adopted the antisymmetrized
diagrams of Brandow [13], indicating with X the one-particle in-
teraction and with a small square the density matrix operator a�a ai.
The ``diamond'' symbols which are present in part of the diagrams
represent the excitations which de®ne determinant jNi with respect
to jMi in Eqs. (9) and (10). For example, the formula corre-

sponding to the ®rst diagram of Fig. 1 gives the contribution

Fai=�E�0�m ÿ E�0�K �. Since the de®nition of the Fock matrix is referred

to determinant jMi which is assumed to be a provisional vacuum, a
rede®nition of particles and holes is necessary for each occurrence
of jMi. Such an operation is very quickly done by adding/subtr-
acting the two electron contributions related to the particles/holes
de®ning jMi with respect to the true Fermi vacuum

Frs  Frs �
X
p2M

hprjjpsi ÿ
X
h2M

hhrjjhsi: �11�

The sign of each diagram is given by the usual �ÿ1�h�l rule with h
and l designating the number of hole lines and loops, respectively.

The denominators which are implied in the diagrams, (E�0�m ÿ E�0�K ),
can always be expressed in terms of quantities depending only on
the spin-orbital labels of the holes and particles de®ning determi-
nant jKi with respect to jMi. In the Mùller±Plesset de®nition of the
zero-order Hamiltonian, the denominators are simply formulated
in terms of suitable orbital energies whereas in the Epstein±Nesbet
case one needs a somewhat more laborious expression; so, for in-
stance, in the case of a double excitation with respect to jMi we
have for the energy of jKi
E�0�K � hM jĤjMi � �0a � �0b ÿ �0i ÿ �0j � hijjjiji � habjjabi

ÿ hiajjiai ÿ hibjjibi ÿ hjajjjai ÿ hjbjjjbi
where the orbital energies �0 are referred to the Fock operator de-
®ned with respect to the jMi determinant and where we have
adopted the antisymmetrized notation for the bielectronic integrals
(hrsjjtui � hrsjtui ÿ hrsjuti).

3 Test case: the CO dipole

As a test case we have considered the calculation of the
electric dipole (l) of the CO molecule. A large amount of
work has been done on this system since the Hartree-
Fock (HF) calculation of Nesbet [14] (for a recent review
see Ref. [15]). It is well-known that for correct estima-
tion of l a good-quality one-electron basis set and a
high-level correlation treatment are needed. For these
reasons we have chosen this system as a test case. As we
will see, the new diagrammatic implementation will
allow us to use variational spaces with dimensions up to
100,000 determinants with reasonable processing time
(all the calculations were performed on a 300 MHz
Pentium II PC). The speed-up gained by the diagram-
matic implementation increases with the dimension of
the S space and the molecular basis set. In the case of
the CO molecule with spaces of a few thousand
determinants in the extended basis set (see later) we
observe an increase of several orders of magnitude in the
e�ciency ratio. In the most demanding calculation, the
processing time is around one hour with the new
method, whereas it would not even be feasible with the
traditional code based on the explicit generation of
perturbation determinants. With larger molecular sys-
tems the e�ciency gain would improve further as in the
case of the application of the diagrammatic techniques
to the energy [5, 6].

The method proposed in this paper is obviously ap-
plicable to all the cases which can be dealt with by the
energy diagrammatic technique, representing just a small
fraction of the latter in terms of computation time. The
diagrammatic technique for the energy has been widely
applied to medium-sized molecules; we shall limit
ourselves to citing just a couple of the calculations car-
ried out in our laboratory, referring to sulfur-containing
molecules and azobenzenes [16, 17].
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Let us note that when a multireference perturbation
CI method is used, the electric dipole is usually calcu-
lated as the ®rst-order derivative of the energy with re-
spect to the electric ®eld (lF ), rather than as the
expectation value of the perturbation corrected wave-
function (lwf) as in our case. The two approaches can
give rather di�erent results: in the case of HF + MP2,
the ®rst-order correction to l vanishes in our approach
due to the Brillouin theorem, while the correction to lHF
is in general non-zero using the energy derivative. In the
evaluation of q�1� (see Eqs. 9 and 10) only single exci-
tations with respect to S have to be taken into account,
while in energy derivatives double excitations also con-
tribute. On the other hand the calculation of q�1� is faster
than the calculation of the second-order correction to
the energy (needed for energy derivatives) and allows
calculation of all the one-electron properties of interest.

We have used two di�erent one-electron basis sets:
the 6-31G* basis of Binkley et al.[18], which is usually
assumed to provide acceptable requisites for the treat-
ment of electron correlation, and the one designated
``basis III'' in Ref. [19] (designated hereafter ``extended
basis'') as an example of a large and more ¯exible basis.
This extended basis consists of the (13s,8p) primitive set
of van Duijneveldt [20] contracted to [8s,5p] with a set of
four d functions and a set of f functions added to each
atom (see Ref. [19] for more details). The two basis sets

contain 28 and 100 functions respectively (spherical
harmonics are used for d and f functions). All the
calculations were performed at the experimental equi-
librium geometry (Re � 2:1322a0 [21]). The molecular
orbitals are the natural orbitals of a CAS-SCF wave-
function (CAS-NOs). The CAS-CI space is obtained by
sharing the eight valence electrons among the ten valence
orbitals, and consists of 328 con®guration state func-
tions. The S spaces are selected following the strategy
reported in Ref. [2, 8] starting from a closed-shell
determinant.

For comparison we have computed l also using the
energy derivative technique, resorting to a ®nite di�er-
ence approach with two uniform electric ®elds (F ) of
�0:001 a.u., according to the following formula:

lF � ÿ
@E
@F
� ÿE F�� � ÿ E Fÿ� �

F� ÿ Fÿ
� O�jF j3� �12�

In order to verify that with a ®eld intensity of 0.001 a.u.
the second-order terms (contribution of polarizability to
dipole) are negligible, we have compared lwf and lF at
the CAS-SCF level. Indeed, as the CAS-SCF wavefunc-
tion is fully optimized with respect to orbital and
coe�cient rotations, the two approaches must give the
same result if the second-order terms are negligible. A
comparison shows that for both basis sets our ®eld

Fig. 1. First-order diagrams
involved in the calculation of
mnq�1�ia . The Fock operator de-
®ned with respect to determi-
nant jMi (vacuum state) is
represented by the symbol X in
a circle, while the interaction
due to the density matrix oper-
ator a�a ai is represented by a
square. The diamonds indicate
the degree of excitation of jNi
with respect to jMi: no dia-
monds ! jNi � jMi, diagonal
contribution; one diamond !
jNi is a single excitation with
respect to jMi, etc. The orbitals
involved in the excitation are
indicated by the lines going into
and out from the diamonds. The
sign of each diagram is given by
the usual �ÿ1�h�l rule with h
and l designating the number of
hole lines and loops, respec-
tively
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intensity is correct: 6-31G* basis ! lwf � ÿ0:10915,
lF � ÿ0:10914; extended basis ! lwf � ÿ0:13549,
lF � ÿ0:13548 (dipole in a.u.).

Inspection of Table 1 shows that for the 6-31G* basis
the iterative process leading to the improvement of the
S space reaches a satisfactory degree of convergence
both for the energy and for the dipole moment; the
Mùller±Plesset and Epstein±Nesbet results are close to
each other and the ®nite-di�erence values for the dipole
are in very good accordance with those calculated with
the density matrix. With this relatively small basis set the
perturbation results can be safely judged as close to the
full CI limit, as can be seen from the agreement between
the two perturbation partitions, both for the energy and
for the dipole moment.

Similar remarks can also be made for the extended
basis results where, due to the much larger dimension of
the orbital basis, convergence in the energy and in the
dipole is more di�cult to obtain. In both bases the ®rst-
order correction to the one-particle density matrix im-
proves the zero-order results but not enough to a�ect the
convergence behaviour and to allow the use of S spaces
of small dimension. As to the accordance with experi-
ment of the results obtained with the two basis sets,
neither the 6-31G* basis nor the extended basis seems to
be able to correctly describe the electric dipole. The
absolute di�erence from the experimental value is actu-
ally very small in magnitude ('0:01 a.u. for the 6-31G*
basis and '0:02 a.u. for the extended basis), but further
work is needed to study the convergence behaviour of l
with respect to the basis set. Ernzerhof et al. [23] have
also compared lwf and lF for the CO molecule using
MRSDCI and averaged coupled pair functional meth-
ods and have shown that the nature of the MOs is
crucial for the e�cient convergence of both procedures.

From Figs. 2 and 3 the results obtained with the
®nite-di�erence approach (lF ) appear to be somewhat
more stable with respect to lwf. This is not surprising
if one considers the important role played by double
excitations from the S space. The ®rst-order density

Fig. 2. Convergence behaviour of l with respect to the dimension
ofS using the 6-31G* basis. Diamonds! zero-order, ``+''! ®rst-
order Mùller±Plesset baricentric, ``�'' ! ®rst-order Epstein-
Nesbet. The horizontal full line represents the experimental value of
l (ÿ0:0484 a.u. [22])

Fig. 3. The same as in Fig. 2, but using the extended basis

Table 1. Convergence behaviour of energy and lwith respect to the
dimension of S (#S) for CO using two di�erent basis sets. For
comparison we also report the results obtained using energy
derivatives with respect to the electric ®eld (lF, see text). The

behaviour of l is also presented in Figs. 2 and 3: here we report only
a selection of calculations. EN represents the use of an Epstein±
Nesbet type Hamiltonian, while MPB represents a Mùller±Plesset
baricentric-type Hamiltonian. Energies and electric dipoles in a.u

#S Energy lwf lF

var EN MPB var EN MPB var EN MPB

6-31G* basis set, CAS-NOs (see text)
1 )112.732930 )113.030467 )113.148445 )0.04693 0.16008 0.08395 0.12884 )0.14510 )0.40668

115 )112.907675 )113.015560 )113.032814 )0.10385 )0.09077 )0.09592 )0.03421 )0.04574 )0.04872
1395 )113.001394 )113.028814 )113.032984 )0.08216 )0.05911 )0.05968 )0.03307 )0.04359 )0.04500
10204 )113.022411 )113.031962 )113.033531 )0.05184 )0.04385 )0.04399 )0.03838 )0.03942 )0.03983
40317 )113.027609 )113.032790 )113.033610 )0.04107 )0.03942 )0.03970 )0.04001 )0.03820 )0.03804
62002 )113.028691 )113.032969 )113.033642 )0.03982 )0.03841 )0.03863 )0.04001 )0.03803 )0.03783

extended basis, CAS-NOs (see text)
16 )112.899997 )113.145616 )113.180642 )0.12980 )0.14853 )0.14821 0.10379 )0.16560 )0.44842
153 )112.942192 )113.152229 )113.173163 )0.14246 )0.13950 )0.14268 0.00238 )0.08157 )0.08684
613 )112.987494 )113.157600 )113.170954 )0.13167 )0.11184 )0.11527 )0.11029 )0.08020 )0.06696

13705 )113.124456 )113.170931 )113.173979 )0.06956 )0.06050 )0.06027 )0.06773 )0.08082 )0.08170
35857 )113.145299 )113.172797 )113.174839 )0.06636 )0.06147 )0.06208 )0.05799 )0.07130 )0.07362
86179 )113.154312 )113.173694 )113.175107 )0.06744 )0.06538 )0.06588 )0.06316 )0.07108 )0.06911
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matrix only implies single excitations from S and such
contributions are usually small with respect to those of
double excitations which on the contrary contribute to
q�2�. We are planning to implement the calculation of
q�2� to verify this statement.
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